Andrew
M.
Childs
Carolan, J. ., Childs, A. M., Kovacs-Deak, M. ., & Schaeffer, L. . (2025). Translation-Invariant Quantum Algorithms for Ordered Search are Optimal. Https://arxiv.org/Abs/2503.21090. Retrieved from https://arxiv.org/abs/2503.21090 (Original work published March 2025)
Liu, Z. ., Childs, A. M., & Gottesman, D. . (2024). Low-depth quantum symmetrization. ArXiv. Retrieved from https://arxiv.org/abs/2411.04019 (Original work published November 2024)
An, D. ., Childs, A. M., Lin, L. ., & Ying, L. . (2024). Laplace transform based quantum eigenvalue transformation via linear combination of Hamiltonian simulation. ArXiv. Retrieved from https://arxiv.org/abs/2411.04010 (Original work published November 2024)
Zhao, Q. ., Zhou, Y. ., & Childs, A. M. (2024). Entanglement accelerates quantum simulation. ArXiv. Retrieved from https://arxiv.org/abs/2406.02379 (Original work published June 2024)
Bosse, J. ., Childs, A. M., Derby, C. ., Gambetta, F. ., Montanaro, A. ., & Santos, R. . (2024). Efficient and practical Hamiltonian simulation from time-dependent product formulas. Nat Commun, 16(2673). http://doi.org/https://doi.org/10.1038/s41467-025-57580-5 (Original work published March 2025)
Chakrabarti, S. ., Childs, A. M., Hung, S.-H. ., Li, T. ., Wang, C. ., & Wu, X. . (2023). Quantum Algorithm for Estimating Volumes of Convex Bodies. ACM Transactions on Quantum Computing, 4, 1–60. http://doi.org/10.1145/3588579 (Original work published May 2023)
Childs, A. M., Coudron, M. ., & Gilani, A. . (2023). Quantum Algorithms and the Power of Forgetting. 14th Innovations in Theoretical Computer Science Conference (ITCS 2023), 251, 37:1–37:22. http://doi.org/10.4230/LIPIcs.ITCS.2023.37 (Original work published February 2023)
Childs, A. M., Kothari, R. ., Kovacs-Deak, M. ., Sundaram, A. ., & Wang, D. . (2025). Quantum divide and conquer. ACM Transactions on Quantum Computing, Volume 6(Issue 2), 1–26. http://doi.org/https://doi.org/10.1145/3723884 (Original work published April 2025)
Childs, A. M., Li, T. ., Liu, J.-P. ., Wang, C. ., & Zhang, R. . (2024). Quantum algorithms for sampling log-concave distributions and estimating normalizing constants. In Advances in Neural Information Processing Systems (NeurIPS 2022). Red Hook, NY, USA: Curran Associates Inc. http://doi.org/10.5555/3600270.3601956 (Original work published April 2024)
Childs, A. M., Liu, J.-P. ., & Ostrander, A. . (2021). High-precision quantum algorithms for partial differential equations. Quantum 5, 574, 5. http://doi.org/10.22331/q-2021-11-10-574 (Original work published November 2021)