Abstract

The so-called welded tree problem provides an example of a black-box problem that can be solved exponentially faster by a quantum walk than by any classical algorithm [Andrew M. Childs et al., 2003]. Given the name of a special entrance vertex, a quantum walk can find another distinguished exit vertex using polynomially many queries, though without finding any particular path from entrance to exit. It has been an open problem for twenty years whether there is an efficient quantum algorithm for finding such a path, or if the path-finding problem is hard even for quantum computers. We show that a natural class of efficient quantum algorithms provably cannot find a path from entrance to exit. Specifically, we consider algorithms that, within each branch of their superposition, always store a set of vertex labels that form a connected subgraph including the entrance, and that only provide these vertex labels as inputs to the oracle. While this does not rule out the possibility of a quantum algorithm that efficiently finds a path, it is unclear how an algorithm could benefit by deviating from this behavior. Our no-go result suggests that, for some problems, quantum algorithms must necessarily forget the path they take to reach a solution in order to outperform classical computation.

Publication Details
Publication Type
Journal Article
Year of Publication
2023
Volume
251
Number of Pages
37:1–37:22
DOI
10.4230/LIPIcs.ITCS.2023.37
URL
https://drops.dagstuhl.de/opus/volltexte/2023/17540
Journal
14th Innovations in Theoretical Computer Science Conference (ITCS 2023)
Contributors
Date Published
02/2023