Dong
An
An, D. ., Fang, D. ., & Lin, L. . (2022). Time-dependent Hamiltonian Simulation of Highly Oscillatory Dynamics and Superconvergence for Schrödinger Equation. Quantum, 6, 690. http://doi.org/10.22331/q-2022-04-15-690 (Original work published April 2022)
Costa, P. ., An, D. ., Sanders, Y. ., Su, Y. ., Babbush, R. ., & Berry, D. . (2021). Optimal scaling quantum linear systems solver via discrete adiabatic theorem. ArXiv. Retrieved from https://arxiv.org/abs/2111.08152 (Original work published November 2021)
An, D. ., Linden, N. ., Liu, J.-P. ., Montanaro, A. ., Shao, C. ., & Wang, J. . (2021). Quantum-accelerated multilevel Monte Carlo methods for stochastic differential equations in mathematical finance. Quantum, 5, 481. http://doi.org/10.22331/q-2021-06-24-481 (Original work published June 2021)
Aftab, J. ., An, D. ., & Trivisa, K. . (2024). Multi-product Hamiltonian simulation with explicit commutator scaling. ArXiv. http://doi.org/10.48550/arxiv.2403.08922 (Original work published March 2024)
An, D. ., Fang, D. ., Jordan, S. ., Liu, J.-P. ., Low, G. ., & Wang, J. . (2022). Efficient quantum algorithm for nonlinear reaction-diffusion equations and energy estimation. ArXiv. http://doi.org/10.48550/arxiv.2205.01141 (Original work published May 2022)
An, D. ., Liu, J.-P. ., Wang, D. ., & Zhao, Q. . (2022). A theory of quantum differential equation solvers: limitations and fast-forwarding. ArXiv. http://doi.org/10.48550/arxiv.2211.05246 (Original work published November 2022)
An, D. ., Liu, J.-P. ., & Lin, L. . (2023). Linear combination of Hamiltonian simulation for nonunitary dynamics with optimal state preparation cost. ArXiv. http://doi.org/10.48550/arxiv.2303.01029 (Original work published March 2023)
An, D. ., & Trivisa, K. . (2023). Quantum algorithms for linear and non-linear fractional reaction-diffusion equations. ArXiv. http://doi.org/10.48550/arxiv.2310.18900 (Original work published October 2023)
An, D. ., Childs, A. M., & Lin, L. . (2023). Quantum algorithm for linear non-unitary dynamics with near-optimal dependence on all parameters. ArXiv. http://doi.org/10.48550/arxiv.2312.03916 (Original work published December 2023)