Abstract

We propose a simple quantum algorithm for simulating highly oscillatory quantum dynamics, which does not require complicated quantum control logic for handling time-ordering operators. To our knowledge, this is the first quantum algorithm that is both insensitive to the rapid changes of the time-dependent Hamiltonian and exhibits commutator scaling. Our method can be used for efficient Hamiltonian simulation in the interaction picture. In particular, we demonstrate that for the simulation of the Schrödinger equation, our method exhibits superconvergence and achieves a surprising second order convergence rate, of which the proof rests on a careful application of pseudo-differential calculus. Numerical results verify the effectiveness and the superconvergence property of our method.

Publication Details
Publication Type
Journal Article
Year of Publication
2022
Volume
6
Number of Pages
690
DOI
10.22331/q-2022-04-15-690
URL
https://arxiv.org/abs/2111.03103v2
Journal
Quantum
Contributors
Groups
Date Published
04/2022