Sub-monolayer sensitivity to controlled gas adsorption and desorption is demonstrated using a double paddle oscillator (DPO) installed within an ultra-high vacuum (UHV) environmental chamber equipped with in situ film deposition, (multi) gas admission and temperature control. This effort is intended to establish a robust framework for quantitatively comparing mass changes due to gas loading and unloading on different materials systems selected or considered for use as mass artefacts. Our apparatus is composed of a UHV chamber with gas introduction and temperature control and in situ materials deposition for future materials testing enabling in situ preparation of virgin surfaces that can be monitored during initial exposure to gasses of interest. These tools are designed to allow us to comparatively evaluate how different materials gain or lose mass due to precisely controlled environmental excursions, with a long term goal of measuring changes in absolute mass. Herein, we provide a detailed experimental description of the apparatus, an evaluation of the initial performance, and demonstration measurements using nitrogen adsorption and desorption directly on the DPO.