Abstract

We study the transition between a Coulomb phase and a dimer crystal observed in numerical simulations of the three-dimensional classical dimer model, by mapping it to a quantum model of bosons in two dimensions. The quantum phase transition that results, from a superfluid to a Mott insulator at fractional filling, belongs to a class that cannot be described within the Landau-Ginzburg-Wilson paradigm. Using a second mapping, to a dual model of vortices, we show that the long-wavelength physics near the transition is described by a U(1) gauge theory with SU(2) matter fields.

Publication Details
Publication Type
Journal Article
Year of Publication
2009
Volume
80
DOI
10.1103/PhysRevB.80.134413
Journal
Physical Review B
Contributors
Groups