We experimentally measure transport of superfluid, bosonic atoms in a mesoscopic system: a small channel connecting two large reservoirs. Starting far from equilibrium (superfluid in a single reservoir), we observe first resistive flow transitioning at a critical current into superflow, characterized by oscillations. We reproduce this full evolution with a simple electronic circuit model. We compare our fitted conductance to two different microscopic phenomenological models. We also show that the oscillations are consistent with LC oscillations as estimated by the kinetic inductance and effective capacitance in our system. Our experiment provides an attractive platform to begin to probe the mesoscopic transport properties of a dilute, superfluid, Bose gas.