Abstract

Under appropriate external conditions a semiconductor nanowire in proximity to an s-wave superconductor can be in a topological superconducting (TS) phase. This phase supports localized zero-energy Majorana fermions at the ends of the wire. However, the non-Abelian exchange statistics of Majorana fermions is difficult to verify because of the one-dimensional topology of such wires. In this paper we propose a scheme to transport Majorana fermions between the ends of different wires using tunneling, which is shown to be controllable by gate voltages. Such tunneling-generated hops of Majorana fermions can be used to exchange the Majorana fermions. The exchange process thus obtained is described by a non-Abelian braid operator that is uniquely determined by the well-controlled microscopic tunneling parameters.

Publication Details
Publication Type
Journal Article
Year of Publication
2011
Volume
84
DOI
10.1103/PhysRevB.84.094505
Journal
Physical Review B
Contributors