Abstract

In typical epitaxial quantum dots (QDs) the ideally degenerate optical excitons are energy split, preventing the formation of two-photon entanglement in a biexciton decay. We use an external field, here a continuous-wave laser tuned to the QD in the ac Stark limit, to cancel the splitting and create two-photon entanglement. Quantum-state tomography is used to construct the two-photon density matrix. When the splitting is removed it satisfies well-known entanglement tests. Our approach shows that polarization-entangled photons can be routinely produced in semiconductor nanostructures.

Publication Details
Publication Type
Journal Article
Year of Publication
2009
Volume
103
DOI
10.1103/PhysRevLett.103.217402
Journal
Physical Review Letters
Contributors
Groups