Abstract

We propose an experimental protocol to study p-wave superfluidity in a spin-polarized cold Fermi gas tuned by an s-wave Feshbach resonance. A crucial ingredient is to add a quasi-one-dimensional optical lattice and tune the fillings of two spins to the s and p band, respectively. The pairing order parameter is confirmed to inherit p-wave symmetry in its center-of-mass motion. We find that it can further develop into a state of unexpected pi-phase modulation in a broad parameter regime. Experimental signatures are predicted in the momentum distributions, density of states, and spatial densities for a realistic experimental setup with a shallow trap. The pi-phase p-wave superfluid is reminiscent of the pi state in superconductor-ferromagnet heterostructures but differs in symmetry and physical origin. The spatially varying phases of the superfluid gap provide an approach to synthetic magnetic fields for neutral atoms. It would represent another example of p-wave pairing, first discovered in He-3 liquids.

Publication Details
Publication Type
Journal Article
Year of Publication
2016
Volume
94
DOI
10.1103/PhysRevA.94.031602
Journal
Physical Review A
Contributors
Groups