Searches for weakly interacting massive particle (WIMP) dark matter will in the near future be sensitive to solar neutrinos. Directional detection offers a method to reject solar neutrinos and improve WIMP searches, but reaching that sensitivity with existing directional detectors poses challenges. We propose a combined atomic/particle physics approach using a large-volume diamond detector. WIMP candidate events trigger a particle detector, after which spectroscopy of nitrogen vacancy (NV) centers reads out the direction of the incoming particle. We discuss the current state of technologies required to realize directional detection in diamond and present a path towards a detector with sensitivity below the neutrino floor.