We formulate code concatenation as the action of a unitary quantum circuit on an expanding tree geometry and find that for certain classes of gates, applied identically at each node, a binary tree circuit encodes a single logical qubit with code distance that grows exponentially in the depth of the tree. When there is noise in the bulk or at the end of this encoding circuit, the system undergoes a phase transition between a coding phase, where an optimal decoder can successfully recover logical information, and non-coding phase. Leveraging the tree structure, we combine the formalism of "tensor enumerators" from quantum coding theory with standard recursive techniques for classical spin models on the Bethe lattice to explore these phases. In the presence of bulk errors, the coding phase is a type of spin glass, characterized by a distribution of failure probabilities. When the errors are heralded, the recursion relation is exactly solvable, giving us an analytic handle on the phase diagram.