We show that there are effective three- and higher-body interactions generated by the two-body collisions of atoms confined in the lowest vibrational states of a three- dimensional (3D) optical lattice. The collapse and revival dynamics of approximate coherent states loaded into a lattice are a particularly sensitive probe of these higher-body interactions; the visibility of interference fringes depend on both two-, three- and higher-body energy scales, and these produce an initial dephasing that can help explain the surprisingly rapid decay of revivals seen in experiments. If inhomogeneities in the lattice system are sufficiently reduced, longer timescale partial and nearly full revivals will be visible. Using Feshbach resonances or control of the lattice potential it is possible to tune the effective higher-body interactions and simulate effective field theories in optical lattices.