Abstract

Coupled-mode theory (CMT) has been widely used in optics and photonics design. Despite its popularity, several different formulations of CMT exist in the literature, and their applicable range is not entirely clear, in particular when it comes to high-index-contrast photonics platforms. Here we propose an improved formulation of CMT and demonstrate its superior performance through numerical simulations that compare CMT-derived quantities with supermode calculations and full wave propagation simulations. In particular, application of the improved CMT to asymmetric waveguides reveals a necessary correction in the conventional phase matching condition for high-index-contrast systems, which could lead to more accurate photonic circuit designs involving asymmetric elements.

Publication Details
Publication Type
Journal Article
Year of Publication
2020
Volume
102
DOI
10.1103/PhysRevA.102.063506
Journal
Physical Review A
Contributors