Abstract

We demonstrate interference between discrete photons emitted by two different semiconductor quantum dots and quantify their degree of indistinguishability. The quantum dot emission energies are tuned into resonance by straining the samples. Upon interference on a beamsplitter, the photons are shown to be 18.1% indistinguishable, resulting in a coincidence detection rate below the classical limit. Post-selecting only those detections occurring within a short time of each other increases the measured indistinguishability to 47%. The photons are partially distinguishable due to dephasing of the exciton states, and post-selection is also affected by the detector response time.

Year of Publication
2011
DOI
10.1117/12.874853
Group