Abstract

We study, for the first time, the effects of strong short-range electron-electron interactions in generic Rarita-Schwinger-Weyl semimetals hosting spin-3/2 electrons with linear dispersion at a fourfold band crossing point. The emergence of this novel quasiparticle, which is absent in high-energy physics, has recently been confirmed experimentally in the solid state. We combine symmetry considerations and a perturbative renormalization group analysis to discern three interacting phases that are prone to emerge in the strongly correlated regime: The chiral topological semimetal breaks a Z(2) symmetry and features four Wcyl nodes of monopole charge +1 located at vertices of a tetrahedron in momentum space. The s-wave superconducting state opens a Majorana mass gap for the fermions and is the leading superconducting instability. The Weyl semimetal phase removes the fourfold degeneracy and creates two Weyl nodes with either equal or opposite chirality depending on the anisotropy of the band structure. We find that symmetry breaking occurs at weaker coupling if the total monopole charge remains constant across the transition.

Publication Details
Author
Publication Type
Journal Article
Year of Publication
2020
Volume
124
DOI
10.1103/PhysRevLett.124.127602
Journal
Physical Review Letters
Contributors
Groups