Gaussian fluctuations (or Gaussian noise) appear in almost all measurements in physics. Here, a concise and self-contained introduction to thermal Gaussian noise is presented. Our analysis in the frequency domain centers on thermal fluctuations of the position of a particle bound in a one-dimensional harmonic potential, which in this case is a microcantilever immersed in a bath of room-temperature gas. Position fluctuations of the microcantilever, detected by the optical beam deflection technique, are then fed into a lock-in amplifier to measure the probability distribution and spectral properties of the fluctuations. The lock-in amplifier measurement is designed to emphasize the frequency-domain properties of Gaussian noise. The discussion here can be complementary to a discussion of Gaussian fluctuations in the time domain. (C) 2014 American Association of Physics Teachers.