Abstract

We demonstrate a magnetooptical trap (MOT) configuration which employs optical forces due to light scattering between electronically excited states of the atom. With the standard MOT laser beams propagating along the x and y directions, the laser beams along the z direction are at a different wavelength that couples two sets of excited states. We demonstrate efficient cooling and trapping of cesium atoms in a vapor cell and sub-Doppler cooling on both the red and blue sides of the two-photon resonance. The technique demonstrated in this work may have applications in background-free detection of trapped atoms, and in assisting laser cooling and trapping of certain atomic species that require cooling lasers at inconvenient wavelengths.

Publication Details
Publication Type
Journal Article
Year of Publication
2009
Volume
103
DOI
10.1103/PhysRevLett.103.173003
Journal
Physical Review Letters
Contributors