We study the collective radiative decay of a system of two two-level emitters coupled to a one-dimensional waveguide in a regime where their separation is comparable to the coherence length of a spontaneously emitted photon. The electromagnetic field propagating in the cavity-like geometry formed by the emitters exerts a retarded backaction on the system leading to strongly non-Markovian dynamics. The collective spontaneous emission rate of the emitters exhibits an enhancement or inhibition beyond the usual Dicke superradiance and subradiance due to self-consistent coherent time-delayed feedback.