Abstract

We describe the quantum phase transition in the N-state chiral clock model in spatial dimension d = 1. With couplings chosen to preserve time-reversal and spatial inversion symmetries, such a model is in the universality class of recent experimental studies of the ordering of pumped Rydberg states in a one-dimensional chain of trapped ultracold alkali atoms. For such couplings and N = 3, the clock model is expected to have a direct phase transition from a gapped phase with a broken global Z(N) symmetry, to a gapped phase with the Z(N) symmetry restored. The transition has dynamical critical exponent z not equal 1, and so cannot be described by a relativistic quantum field theory. We use a lattice duality transformation to map the transition onto that of a Bose gas in d = 1, involving the onset of a single-boson condensate in the background of a higher-dimensional N-boson condensate. We present a renormalization group analysis of the strongly coupled field theory for the Bose gas transition in an expansion in 2 - d, with 4 - N chosen to be of order 2 - d. At two-loop order, we find a regime of parameters with a renormalization group fixed point which can describe a direct phase transition. We also present numerical density-matrix renormalization group studies of lattice chiral clock and Bose gas models for N = 3, finding good evidence for a direct phase transition, and obtain estimates for z and the correlation length exponent v.

Publication Details
Publication Type
Journal Article
Year of Publication
2018
Volume
98
DOI
10.1103/PhysRevB.98.205118
Journal
Physical Review B
Contributors
Groups