Motivated by understanding the emergence of thermodynamic restoring forces and oscillations, we develop a quantum-mechanical model of a bath of spins coupled to the elasticity of a material. We show our model reproduces the behavior of a variety of entropic springs while enabling investigation of nonequilibrium resonator states in the quantum domain. We find our model emerges naturally in disordered elastic media, such as glasses, and is an additional expected effect in systems with anomalous specific heat and 1/f noise at low temperatures due to two-level systems that fluctuate.