We perform a quantum simulation of the Ising model with a transverse field using a collection of three trapped atomic ion spins. By adiabatically manipulating the Hamiltonian, we directly probe the ground state for a wide range of fields and form of the Ising couplings, leading to a phase diagram of magnetic order in this microscopic system. The technique is scalable to much larger numbers of trapped ion spins, where phase transitions approaching the thermodynamic limit can be studied in cases where theory becomes intractable.