Abstract

Quantum simulation of spin models can provide insight into problems that are difficult or impossible to study with classical computers. Trapped ions are an established platform for quantum simulation, but only systems with fewer than 20 ions have demonstrated quantum correlations. We studied quantum spin dynamics arising from an engineered, homogeneous Ising interaction in a two-dimensional array of Be-9(+) ions in a Penning trap. We verified entanglement in spin-squeezed states of up to 219 ions, directly observing 4.0 +/- 0.9 decibels of spectroscopic enhancement, and observed states with non-Gaussian statistics consistent with oversqueezed states. The good agreement with ab initio theory that includes interactions and decoherence lays the groundwork for simulations of the transverse-field Ising model with variable-range interactions, which are generally intractable with classical methods.

Publication Details
Publication Type
Journal Article
Year of Publication
2016
Volume
352
Number of Pages
1297-1301
DOI
10.1126/science.aad9958
Journal
Science
Contributors
Groups