The desiderata for an ideal photon source are high brightness, high single-photon purity, and high indistinguishability. Defining brightness at the first collection lens, these properties have been simultaneously demonstrated with solid-state sources; however, absolute source efficiencies remain close to the 1% level and indistinguishability has only been demonstrated for photons emitted consecutively on the few-nanoseconds scale. Here, we employ deterministic quantum dot-micropillar devices to demonstrate solid-state single-photon sources with scalable performances. In one device, an absolute brightness at the output of a single-mode fiber of 14% and purities of 97.1%-99.0% are demonstrated. When nonresontantly excited, it emits a long stream of photons that exhibit indistinguishability up to 70%-above the classical limit of 50%-even after 33 consecutively emitted photons with a 400 ns separation between them. Resonant excitation in other devices results in near-optimal indistinguishability values: 96% at short timescales, remaining at 88% in timescales as large as 463 ns after 39 emitted photons. The performance attained by our devices brings solid-state sources into a regime suitable for scalable implementations. (C) 2016 Optical Society of America