Abstract

Engineering phonon transport in physical systems is a subject of interest in the study of materials, and has a crucial role in controlling energy and heat transfer. Of particular interest are non-reciprocal phononic systems, which in direct analogy to electric diodes, provide a directional flow of energy. Here, we propose an engineered nanostructured material, in which tunable non-reciprocal phonon transport is achieved through optomechanical coupling. Our scheme relies on breaking time-reversal symmetry by a spatially varying laser drive, which manipulates low-energy acoustic phonons. Furthermore, we take advantage of developments in the manipulation of high-energy phonons through controlled scattering mechanisms, such as using alloys and introducing disorder. These combined approaches allow us to design an acoustic isolator and a thermal diode. Our proposed device will have potential impact in phonon-based information processing, and heat management in low temperatures.

Publication Details
Publication Type
Journal Article
Year of Publication
2018
Volume
9
DOI
10.1038/s41467-018-03624-y
Journal
Nature Communications
Download the Publication
Contributors