Trapped ions offer a pristine platform for quantum computation and simulation, but improving their coherence remains a crucial challenge. Here, we propose and analyze a new strategy to enhance the coherent interactions in trapped ion systems via parametric amplification of the ions motion-by squeezing the collective motional modes (phonons), the spin-spin interactions they mediate can be significantly enhanced. We illustrate the power of this approach by showing how it can enhance collective spin states useful for quantum metrology, and how it can improve the speed and fidelity of two-qubit gates in multi-ion systems, important ingredients for scalable trapped ion quantum computation. Our results are also directly relevant to numerous other physical platforms in which spin interactions are mediated by bosons.