Abstract

Across solid state quantum information, material deficiencies limit performance through enhanced relaxation, charge defect motion, or isotopic spin noise. While classical measurements of device performance provide cursory guidance, specific qualifying metrics and measurements applicable to quantum devices are needed. For quantum applications, new material metrics, e.g., enrichment, are needed, while existing classical metrics such as mobility might be relaxed compared to conventional electronics. In this work, we examine locally grown silicon that is superior in enrichment, but inferior in chemical purity compared to commercial-silicon, as part of an effort to underpin the material standards needed for quantum grade silicon and establish a standard approach for the intercomparison of these materials. We use a custom, mass-selected ion beam deposition technique, which has produced isotopic enrichment levels up to 99.999 98% Si-28, to isotopically enrich Si-28, but with chemical purity >99.97% due to the molecular beam epitaxy techniques used. From this epitaxial silicon, we fabricate top-gated Hall bar devices simultaneously on Si-28 and on the adjacent natural abundance Si substrate for intercomparison. Using standard-methods, we measure maximum mobilities of approximate to(1740 +/- 2) cm(2)/(V s) at an electron density of (2.7 x 10(12) +/- 3 x 10(8)) cm(-2) and approximate to(6040 +/- 3) cm(2)/(V s) at an electron density of (1.2 x 10(12) +/- 5 x 10(8)) cm(-2) at T = 1.9 K for devices fabricated on Si-28 and Si-nat, respectively. For magnetic fields B > 2 T, both devices demonstrate well developed Shubnikov-de Haas oscillations in the longitudinal magnetoresistance. This provides the transport characteristics of isotopically enriched Si-28 and will serve as a benchmark for the classical transport of Si-28 at its current state and low temperature, epitaxially grown Si for quantum devices more generally. (C) 2019 Author(s).

Publication Details
Publication Type
Journal Article
Year of Publication
2019
Volume
9
DOI
10.1063/1.5128098
Journal
Aip Advances
Contributors
Groups