Abstract

The calculation of excited state energies of electronic structure Hamiltonians has many important applications, such as the calculation of optical spectra and reaction rates. While low-depth quantum algorithms, such as the variational quantum eigenvalue solver (VQE), have been used to determine ground state energies, methods for calculating excited states currently involve the implementation of high-depth controlled-unitaries or a large number of additional samples. Here we show how overlap estimation can be used to deflate eigenstates once they are found, enabling the calculation of excited state energies and their degeneracies. We propose an implementation that requires the same number of qubits as VQE and at most twice the circuit depth. Our method is robust to control errors, is compatible with error-mitigation strategies and can be implemented on near-term quantum compute

Publication Details
Publication Type
Journal Article
Year of Publication
2019
Volume
3
DOI
10.22331/q-2019-07-01-156
URL
https://arxiv.org/abs/1805.08138
Journal
Quantum
Contributors
Groups
Date Published
06/2019