Semester Calendar Date

Simulating Mesonic Scattering Processes on Trapped-Ion Simulators

Abstract: Obtaining real-time dynamics of particle collisions is a long-standing goal in high energy and nuclear physics. Developing protocols to simulate lattice gauge theories on quantum simulators offer a strategy to probe these scattering processes. Both long-range and short-range quantum Ising chains exhibit the confinement of quasiparticles, analogous to the high-energy confinement of quarks in bound, meson states. In this talk, we will discuss a proposal to simulate meson scattering in a trapped-ion simulator.

Towards cross-platform verification in quantum networks

Intermediate-scale quantum devices are becoming more reliable, and may soon be harnessed to solve useful computational tasks. At the same time, common classical methods used to verify their computational output become intractable due to their prohibitive scaling of required resources with system size. In this talk, I aim at giving an overview of selected verification strategies. Inspired by recent experimental progress, we analyze efficient cross-platform verification protocols for quantum states and computations.

The Riemann Zeta Function, Poincare Recurrence, and Quantum Chaos

Abstract: The spectral form factor is an important diagnostic of quantum chaos and thermalization. In this talk we will dive into a surprising duality between short time behavior and exponentially late-time behavior, with a cameo from the Riemann zeta function.

(Pizza and drinks will be served after the seminar)

A Probe of Band Structure Singularities with a Lattice-Trapped Quantum Gas Abstract

Abstract: Ultracold-atom quantum simulators are powerful experimental tools that provide insight into the properties of crystalline solids. Important crystalline solid properties, such as electrical resistivity and optical absorption, are set by the crystal’s energy band structure (bands of the allowable energies of electrons in the potential generated by a lattice arrangement of atomic or molecular ions). However, it is not only the band structure that determines the properties of a crystal.

Vortex Majorana modes in trivial and topological superconductors

Abstract: In this talk, I will describe two distinct strategies for trapping Majorana zero modes (MZMs) with superconducting vortices. There exists a common belief that for s-wave superconductors, the existence of normal-state band topology, such as the topological Dirac surface state, is crucial for inducing vortex MZMs. We recently uncovered a striking example where nontrivial vortex Majorana physics arises in a trivial s-wave superconductor with a trivial normal state.

Integrated Optical Control of Atomic Systems

Abstract: Over the last decade, flat optical elements composed of an array of deep-subwavelength dielectric or metallic nanostructures of nanoscale thicknesses – referred to as metasurfaces – have revolutionized the field of optics. Because of their ability to impart an arbitrary phase, polarization or amplitude modulation to an optical wavefront as well as perform multiple optical transformations simultaneously on the incoming light, they promise to replace traditional bulk optics in applications requiring compactness, integration and/or multiplexing.

Spin cross-correlation experiments in a Cooper Pair Splitter

Abstract: Correlations are fundamental in describing many body systems. However, in experiments, correlations are notoriously difficult to assess on the microscopic scale, especially for electron spins. While it is firmly established theoretically that the electrons in a Cooper pair of a superconductor form maximally spin-entangled singlet states with opposite spin projections, no spin correlation experiments have been demonstrated so far.

Novel Applications and Noise-enabled Control for a Trapped-ion Quantum Simulator

Trapped atomic ions are a highly versatile platform for quantum simulation and computation. In this talk, I will provide a brief description of the quantum control that enables both analog and digital modes of quantum simulation on this platform before reporting on two recent results: a digital quantum simulation that measured the first out-of-time-order correlators in a thermal system, and an analog simulation of particles with exotic statistics.

Integrated Photonic Quantum Information Processing

Abstract: In recent years, photonics has become one of the key contenders in the race to build large-scale quantum computers. The prominence of photonics as a quantum information technology is underscored by the fact that it is one of only a handful of technology platforms which has achieved a quantum advantage, i.e., a large-scale quantum system which outperforms a classical supercomputer at some well-defined computational task [1 2].