Semester Calendar Date

Introduction to Quantum Computing (CMSC457/PHYS457, Fall 2023)

An introduction to the concept of a quantum computer, including algorithms that outperform classical computation and methods for performing quantum computation reliably in the presence of noise. As this is a multidisciplinary subject, the course will cover basic concepts in theoretical computer science and physics in addition to introducing core quantum computing topics.
 

Advanced Topics in Theory of Computing; Quantum Control, Metrology, and Error Mitigation for Quantum Algorithm Deployment (CMSC858V, Fall 2023)

Covers the fundamentals of quantum control and metrology in both digital and analog domains: design and calibration of quantum gates, analog quantum operations, quantum state preparation, and measurement; estimation, characterization, and mitigation of environmental noise; synthesis of logical quantum circuits to physical quantum circuits for agiven quantum hardware architecture. Connects quantum control and metrology tothe deployment of quantum algorithms on near-term quantum computers: superconducting qubits, ion trap qubits, and neutral atom qubits.

Observation of a finite-energy phase transition in a one-dimensional quantum simulator

One of the most striking many-body phenomena in nature is the sudden change of macroscopic properties as the temperature or energy reaches a critical value. Such equilibrium transitions have been predicted and observed in two and three spatial dimensions, but have long been thought not to exist in one-dimensional (1D) systems.

Measuring finite-energy properties of the Fermi-Hubbard model in a trapped-ion quantum computer

Calculating the equilibrium properties of condensed matter systems is one of the promising applications of near-term quantum computing. Recently, hybrid quantum-classical time-series algorithms have been proposed to efficiently extract these properties (time evolution up to short times t). In this work, we study the operation of this algorithm on a present-day quantum computer. Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a 16-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device.

Fault-tolerant hyperbolic Floquet quantum error correcting codes

Abstract: In this talk, I will introduce a family of dynamically generated quantum error correcting codes that we call “hyperbolic Floquet codes.” These codes are defined by a specific sequence of non-commuting two-body measurements arranged periodically in time that stabilize a topological code on a hyperbolic manifold with negative curvature. We focus on a family of lattices for n qubits that, according to our prescription that defines the code, provably achieve a finite encoding rate (1/8+2/n) and have a depth-3 syndrome extraction circuit.

Rydberg atoms for molecular physics and field sensing

Abstract: Neutral atoms in highly-excited Rydberg states are actively utilized in a variety of research directions such as ultracold chemistry and many-body physics, precision measurements and emerging quantum technologies. This talk is focused on using Rydberg atoms for creating long-range molecular states and for sensing AC/DC electric fields. First, I will present a novel type of Rydberg dimer formed through long-range electric-multipole interactions between a Rydberg atom and an ion. Its vibrational spectra and stability against nonadiabatic effects will be discussed.

Local Hamiltonian Problem with succinct ground state is MA-Complete

Finding the ground energy of a quantum system is a fundamental problem in condensed matter physics and quantum chemistry. Existing classical algorithms for tackling this problem often assume that the ground state has a succinct classical description, i.e. a poly-size classical circuit for computing the amplitude. Notable examples of succinct states encompass matrix product states, contractible projected entangled pair states, and states that can be represented by classical neural networks.