New Design Packs Two Qubits into One Superconducting Junction

Quantum computers are the basis of a growing industry. However, their technology isn’t standardized yet, and researchers are still studying the physics that goes into quantum devices. Even the most basic building blocks of a quantum computer—qubits—are still an active research topic. In an article in the journal Physical Review A, JQI researchers proposed a way to use the physics of superconducting junctions to let each function as more than one qubit.

RydIQUle: Forward Modelling of Rydberg Quantum Sensors in Python

Atomic quantum sensors (e.g. clocks, magnetometers, electrometers, inertial sensors, etc.) are being used to solve real-world problems including global positioning, imaging of biological systems, and geodesy, with new applications continually emerging. The breadth of the atomic sensor design space is daunting, since one may utilize any combination of atomic states, lasers, rf fields, time-dependence, atomic nonlinearities, lasercooling and trapping, and Rydberg states.

Quantum Rydberg sensor simultaneously measures five RF fields spanning 1.7 to 116 GHz

Recent work uses a quantum sensor to simultaneously receive five radio-frequency (RF) signals covering 120 gigahertz (GHz) of the electromagnetic spectrum. This demonstration expands the boundaries of wireless communications, highlighting a unique capability difficult to achieve with other technologies.

Particle Physics and Quantum Simulation Collide in New Proposal

Zohreh Davoudi is collaborating with experts in quantum computing technologies to ensure that the relevant problems in her fields of nuclear and particle physics are poised to reap the benefits when quantum simulations mature. Davoudi along with JQI Fellow Alexey Gorshkov and other colleagues proposed a quantum simulation that might be possible to implement soon. They proposal involves using superconducting circuits to simulate a simplified model of collisions between fundamental particles called quarks and mesons (which are themselves made of quarks and antiquarks).