Bullseye! New Method Accurately Centers Quantum Dots Within Photonic Chips
Researchers at JQI and the National Institute of Standards and Technology (NIST) have developed standards and calibrations for optical microscopes that allow quantum dots to be aligned with the center of a photonic component to within an error of 10 to 20 nanometers (about one-thousandth the thickness of a sheet of paper). Such alignment is critical for chip-scale devices that employ the radiation emitted by quantum dots to store and transmit quantum information.
Carving Up Infinite Quantum Spaces into Simpler Surrogates
Researchers have constructed new mathematical tools for continuous variable (CV) quantum systems, which could lead to more efficient benchmarking for quantum devices and more efficient ways of representing quantum states on classical hardware.
Dicing Up Infinite Quantum Spaces into Simpler Surrogates
Researchers have constructed new mathematical tools for continuous variable (CV) quantum systems, which could lead to more efficient benchmarking for quantum devices and more efficient ways of representing quantum states on classical hardware.
Light Synchronization Technique Heralds a Bright New Chapter for Small Atomic Clocks
Humanity’s desire to measure time more and more accurately has been a driving force in technological development, and improved clocks and the innovations behind them have repeatedly delivered unexpected applications and scientific discoveries. For instance, when sailors needed high precision timekeeping to better navigate the open seas, it motivated the development of mechanical clocks. And in turn, more accurate clocks allowed better measurements in astronomy and physics. Now, clocks are inescapable parts of daily life, but the demands of GPS, space navigation and other applications are still motivating scientists to push timekeeping to new extremes.
Do the Bump: NIST Scientists Perfect Miniaturized Technique to Generate Precise Wavelengths of Visible Laser Light
In research, sometimes the bumpy path proves to be the best one. By creating tiny, periodic bumps in a miniature racetrack for light, researchers at the National Institute of Standards and Technology (NIST) and their colleagues at JQI have converted near-infrared (NIR) laser light into specific desired wavelengths of visible light with high accuracy and efficiency.
Quantum Computers Run on Just the Right Amount of Connectivity
Scientists know that entanglement, a special connection that intertwines the fate of quantum particles, is a crucial ingredient for quantum computers. Without it, a quantum computer loses its ability to harness the fullness of quantum complexity—that special sauce that makes the quantum world impossible to emulate on ordinary computers. But whether entanglement is the only key, and exactly how much of it is needed, no one really knows.
Simulations of ‘Backwards Time Travel’ Can Improve Scientific Experiments
If gamblers, investors and quantum experimentalists could bend the arrow of time, their advantage would be significantly higher, leading to significantly better outcomes.
Embracing Uncertainty Helps Bring Order to Quantum Chaos
In physics, chaos is something unpredictable. A butterfly flapping its wings somewhere in Guatemala might seem insignificant, but those flits and flutters might be the ultimate cause of a hurricane over the Indian Ocean. The butterfly effect captures what it means for something to behave chaotically: Two very similar starting points—a butterfly that either flaps its wings or doesn’t—could lead to two drastically different results, like a hurricane or calm winds.
But there's also a tamer, more subtle form of chaos in which similar starting points don’t cause drastically different results—at least not right away. This tamer chaos, known as ergodicity, is what allows a coffee cup to slowly cool down to room temperature or a piece of steak to heat up on a frying pan. It forms the basis of the field of statistical mechanics, which describes large collections of particles and how they exchange energy to arrive at a shared temperature. Chaos almost always grows out of ergodicity, forming its most eccentric variant.
Advocating for Quantum Simulations of Extreme Physics
The Big Bang, supernovae, collisions of nuclei at breakneck speeds—our universe is filled with extreme phenomena, both natural and human-made. But the surprising thing is that all of these seemingly distinct processes are governed by the same underlying physics: a combination of quantum mechanics and Einstein’s theory of special relativity known as quantum field theory.
Novel Quantum Speed Limits Tackle Messy Reality of Disorder
The researchers and engineers studying quantum technologies are exploring uncharted territory. Due to the unintuitive quirks of quantum physics, the terrain isn’t easy to scout, and the path of progress has been littered with wrong turns and dead ends.