Collective exciton properties in charge-ordered moire' transition metal dichalcogenide bilayers

Abstract: Light emitters within two-dimensional arrays have been demonstrated to exhibit various cooperative effects, including super- and sub-radiance, collective line-shift and linewidth, and topological features such as Chern bands and edge states. Motivated by these intriguing properties, the realization of emitter arrays has been attempted in cold atom experiments, which nevertheless cannot access the deep subwavelength regime.

Total functions exhibit exponential quantum advantage — albeit in a parallel universe

Abstract: We construct a total function which exhibits an exponential quantum parallel query advantage despite having no sequential query advantage. This is interesting for two reasons: (1) For total functions an exponential sequential query advantage is impossible, and was conjectured to not be possible in the parallel setting by Jeffery et al (2017)— our result refutes this conjecture. (2) The exponential speedup emerges entirely from quantum algorithms being able to utilize parallelism more effectively than classical algorithms, making this a genuinely parallel phenomenon.

Evaluating the security of CRYSTALS-Dilithium in the quantum random oracle model

Abstract: In the wake of recent progress on quantum computing hardware, the National Institute of Standards and Technology (NIST) is standardizing cryptographic protocols that are resistant to attacks by quantum adversaries. The primary digital signature scheme that NIST has chosen is CRYSTALS-Dilithium. The hardness of this scheme is based on the hardness of three computational problems: Module Learning with Errors (MLWE), Module Short Integer Solution (MSIS), and SelfTargetMSIS. MLWE and MSIS have been well-studied and are widely believed to be secure.

Graphene to gravity

Abstract: Twisted bilayer graphene is a rich condensed matter system, which allows one to tune energy scales and electronic correlations. The low-energy physics of the resulting moiré structure can be mathematically described in terms of a diffeomorphism in a continuum formulation. Twisting is just one example of moiré diffeomorphisms.

Optical pumping of electronic quantum Hall states with vortex light

Abstract: A fundamental requirement for quantum technologies is the ability to coherently control the interaction between electrons and photons. However, in many scenarios involving the interaction between light and matter, the exchange of linear or angular momentum between electrons and photons is not feasible, a condition known as the dipole-approximation limit.

Succinct Fermion Data Structures

Abstract:  Many applications of quantum simulation require qubit representations of a fixed number of fermions (F) in a larger number of possible modes (M). Representing such states is possible with I := ⌈log(M choose F)⌉ qubits, but existing constructions achieving this level of compactness result in fermion operators with gate complexity exponential in I. We show that a small amount of redundancy enables efficiency, presenting a second quantized fermion encoding using I + O( F ) qubits such that fermion operators can be implemented in depth O( log M ) and gate complexity O(I).

Measuring finite-energy properties of the Fermi-Hubbard model in a trapped-ion quantum computer

Abstract: Calculating the equilibrium properties of condensed matter systems is one of the promising applications of near-term quantum computing. Recently, hybrid quantum-classical time-series algorithms have been proposed to efficiently extract these properties (time evolution up to short times t). In this work, we study the operation of this algorithm on a present-day quantum computer. Specifically, we measure the Loschmidt amplitude for the Fermi-Hubbard model on a 16-site ladder geometry (32 orbitals) on the Quantinuum H2-1 trapped-ion device.

Fault-tolerant hyperbolic Floquet quantum error correcting codes

Abstract: In this talk, I will introduce a family of dynamically generated quantum error correcting codes that we call “hyperbolic Floquet codes.” These codes are defined by a specific sequence of non-commuting two-body measurements arranged periodically in time that stabilize a topological code on a hyperbolic manifold with negative curvature. We focus on a family of lattices for n qubits that, according to our prescription that defines the code, provably achieve a finite encoding rate (1/8+2/n) and have a depth-3 syndrome extraction circuit.

Correlation Spectroscopy for Correlated Materials – G(2) spectroscopy of Mott insulators

Abstract: Optical spectroscopy is used to study a material by measuring the intensity of light modes that scatter off it. In this work, we develop a theory for G2 spectroscopy of correlated materials, where instead of measuring the intensity of scattered photons, one measures the second order coherence between pairs of photons scattered off a material. We map this correlation function of the photons to the correlation functions of the material being probed.