MAViS: Modular Autonomous Virtualization System for Two-Dimensional Semiconductor Quantum Dot Arrays
Arrays of gate-defined semiconductor quantum dots are among the leading candidates for building scalable quantum processors. High-fidelity initialization, control, and readout of spin qubit registers require exquisite and targeted control over key Hamiltonian parameters that define the electrostatic environment. However, due to the tight gate pitch, capacitive crosstalk between gates hinders independent tuning of chemical potentials and interdot couplings. While virtual gates offer a practical solution, determining all the required cross-capacitance matrices accurate
A Landau Level at Zero Flux, Magic, and Abelianization
A Landau level (which is a flat band) forms only when a magnetic flux with non-zero total flux threads a system. In fact the degeneracy at the flat band is proportional to the flux. So no flat band can form when the magnetic flux averages to zero. We will discuss this and then show otherwise. This is relevant to time reversal symmetric systems that form flat bands such as magic-angle twisted bilayer graphene. In this talk the magic behind those systems will be revealed through the simplest model that gives rise to magical behaviour.
Quantum Routing and Entanglement Capacity Through Bottlenecks
To implement arbitrary quantum interactions in architectures with restricted topologies, one may simulate all-to-all connectivity by routing quantum information. Therefore, it is of natural interest to find optimal protocols and lower bounds for routing. We consider a connectivity graph, G, of 2 regions connected only through an intermediate region of a small number of qubits that form a vertex bottleneck. Existing results only imply a trivial lower bound on the entangling rate and routing time across a vertex bottleneck.
Fiber Bundle Fault Tolerance of GKP Codes
Fault tolerance is a notion of fundamental importance to the field of quantum information processing. It is one of the central properties a quantum computer must possess in order to enable the achievement of large scale practical quantum computation. While a widely used, general, and intuitive concept, within the literature the term fault tolerant is often applied to specific procedures in an ad-hoc fashion tailored to details of the context or platform under discussion.
Long-range entangled quantum matter from measurement and feedback
Long-range entangled states of matter encompass a variety of exotic quantum phenomena, ranging from topological orders to quantum criticality. In this talk, I will discuss recent advances in leveraging mid-circuit measurements and unitary feedback to efficiently generate these entangled many-body states.
The State Hidden Subgroup Problem and How to Efficiently Locate Unentanglement
We introduce the “hidden cut problem:” given as input which is product across an unknown bipartition, the goal is to learn precisely where the state is unentangled, i.e. to find the hidden cut. We give a polynomial time quantum algorithm for the hidden cut problem, which consumes O(n/ε^2) many copies of the state, and show that this asymptotic is optimal. In the special case of Haar-random states, the circuits involved are of merely constant depth, which could prove relevant to experimental implementations.
Quantum Sensing, with Applications to Fundamental Physics
Quantum sensing leverages the principles of quantum mechanics to provide ``quantum-enhanced'' measurement sensitivity, thereby amplifying our ability to observe interesting physical phenomena. It employs a rich arsenal of techniques, including squeezing, photon counting, entanglement assistance, and distributed quantum sensing to achieve unprecedented sensitivity.
Entanglement witness for combined atom interferometer-mechanical oscillator system
D. Carney et al. [https://doi.org/10.1103/PRXQuantum.2.030330] suggest the use of a trapped atom interferometer combined with a mechanical oscillator to test certain theories combining quantum mechanics with gravity. We construct an entanglement witness applicable to the stated interferometer-oscillator setup. We also investigate the effects of atomic dephasing and thermal noise on the practical use of this entanglement witness in an experimental implementation of such a system.
Instability of steady-state mixed symmetry-protected topological order to strong-to-weak spontaneous symmetry breaking
We address the question of whether open quantum system dynamics which host mixed symmetry-protected topological (SPT) states as steady states continue to do so after introducing symmetric perturbations. In particular, we discuss the characteristics of the decohered cluster state --- a mixed SPT protected by a combined strong and weak symmetry --- and construct a parent Lindbladian which hosts it as a steady state. The parent Lindbladian can be mapped onto reaction-diffusion dynamics, which is exactly solvable, even in the presence of certain perturbations.