ChunJun
Cao
Cao, C. ., & Lackey, B. . (2022). Quantum Lego: Building Quantum Error Correction Codes from Tensor Networks. PRX Quantum, 3, 020332. http://doi.org/10.1103/PRXQuantum.3.020332 (Original work published May 2022)
Bao, N. ., Cao, C. ., & Zhu, G. . (2022). Deconfinement and error thresholds in holography. Phys. Rev. D, 106, 046009. http://doi.org/10.1103/PhysRevD.106.046009 (Original work published August 2022)
Cao, C. . (2021). From Quantum Codes to Gravity: A Journey of Gravitizing Quantum Mechanics. ArXiv. Retrieved from https://arxiv.org/abs/2112.00199 (Original work published November 2021)
Bao, N. ., Cao, C. ., & Su, V. . (2022). Magic state distillation from entangled states. Phys. Rev. A, 105, 022602. http://doi.org/10.1103/PhysRevA.105.022602 (Original work published February 2022)
Cao, C. ., & Lackey, B. . (2021). Approximate Bacon-Shor Code and Holography. Journal of High Energy Physics, 2021. http://doi.org/10.1007/JHEP05(2021)127 (Original work published May 2021)
Cao, C. ., Pollack, J. ., & Wang, Y. . (2022). Hyperinvariant multiscale entanglement renormalization ansatz: Approximate holographic error correction codes with power-law correlations. Phys. Rev. D, 105, 026018. http://doi.org/10.1103/PhysRevD.105.026018 (Original work published January 2022)
White, C. D., Cao, C. ., & Swingle, B. . (2021). Conformal field theories are magical. Physical Review B, 103, 075145. http://doi.org/10.1103/PhysRevB.103.075145 (Original work published February 2021)
Bao, N. ., Cao, C. ., Fischetti, S. ., Pollack, J. ., & Zhong, Y. . (2020). More of the Bulk from Extremal Area Variations. Classical and Quantum Gravity, 38, 047001. http://doi.org/10.1088/1361-6382/abcfd0 (Original work published December 2020)
Cao, C. ., Q, X.-L. ., Swingle, B. ., & Tang, E. . (2020). Building Bulk Geometry from the Tensor Radon Transform. Journal of High Energy Physics, 2020, 1–50. Retrieved from https://arxiv.org/abs/2007.00004 (Original work published December 2020)
Cao, C. ., Chatwin-Davies, A. ., & Singh, A. . (2019). How low can vacuum energy go when your fields are finite-dimensional?. International Journal of Modern Physics D, 28, 1944006. http://doi.org/10.1142/S0218271819440061 (Original work published July 2019)