Abstract

Using the tensor Radon transform and related numerical methods, we study how bulk geometries can be explicitly reconstructed from boundary entanglement entropies in the specific case of AdS3/CFT2. We find that, given the boundary entanglement entropies of a 2d CFT, this framework provides a quantitative measure that detects whether the bulk dual is geometric in the perturbative (near AdS) limit. In the case where a well-defined bulk geometry exists, we explicitly reconstruct the unique bulk metric tensor once a gauge choice is made. We then examine the emergent bulk geometries for static and dynamical scenarios in holography and in many-body systems. Apart from the physics results, our work demonstrates that numerical methods are feasible and effective in the study of bulk reconstruction in AdS/CFT.

Publication Details
Publication Type
Journal Article
Year of Publication
2020
Volume
2020
Number of Pages
1–50
URL
https://arxiv.org/abs/2007.00004
Journal
Journal of High Energy Physics
Contributors
Groups
Date Published
12/2020