Abstract: Lieb-Robinson bounds are powerful analytical tools for constraining the dynamic and static properties of non-relativistic quantum systems. Recently, a complete picture for closed systems that evolve unitarily in time has been achieved. In experimental systems, however, interactions with the environment cannot generally be ignored, and the extension of Lieb-Robinson bounds to dissipative systems which evolve non-unitarily in time remains an open challenge. In this work, we prove two Lieb-Robinson bounds that constrain the dynamics of open quantum systems with long-range interactions that decay as a power-law in the distance between particles. Using a combination of these Lieb-Robinson bounds and mixing bounds which arise from "reversibility''—naturally satisfied for thermal environments---we prove the clustering of correlations in the steady states of open quantum systems with long-range interactions. Our work provides an initial step towards constraining the steady-state entanglement structure for a broad class of experimental platforms, and we highlight several open directions regarding the application of Lieb-Robinson bounds to dissipative systems.
Location: ATL 2324 and broadcast on Zoom: https://umd.zoom.us/j/96160177762
Pizza and refreshments will be served after the talk.