picture-600-1636060268.jpg
Event Details
Speaker Name
Yijia Xu
Speaker Institution
(QuICS)
Start Date & Time
2022-04-08 1:00 pm
End Date & Time
2022-04-08 1:00 pm
Semester
QuICS Event Type
Event Details

We argue that all locality-preserving mappings between fermionic observables and Pauli matrices on a two-dimensional lattice can be generated from the exact bosonization (arXiv:1711.00515), whose gauge constraints project onto the subspace of the toric code with emergent fermions. Starting from the exact bosonization and applying Clifford finite-depth generalized local unitary (gLU) transformation, we can achieve all possible fermion-to-qubit mappings (up to the re-pairing of Majorana fermions). In particular, we discover a new super-compact encoding using 1.25 qubits per fermion on the square lattice, which is lower than any method in the literature. We prove the existence of fermion-to-qubit mappings with qubit-fermion ratios 1+1/2k for positive integers k, where the proof utilizes the trivialness of quantum cellular automata (QCA) in two spatial dimensions. When the ratio approaches 1, the fermion-to-qubit mapping reduces to the 1d Jordan-Wigner transformation along a certain path in the two-dimensional lattice. Finally, we explicitly demonstrate that the Bravyi-Kitaev superfast simulation, the Verstraete-Cirac auxiliary method, Kitaev's exactly solved model, the Majorana loop stabilizer codes, and the compact fermion-to-qubit mapping can all be obtained from the exact bosonization.

(Pizza and refreshments will be served after the talk.)

Location
ATL 2324 and Virtual Via Zoom
Misc
Groups
TEMP migration NID
12002985