Abstract: Building large-scale modular quantum computers and quantum networks require high fidelity, high efficiency, and long lifetime quantum memories [1]. Quantum memories are proposed to increase photon-mediatated matter-qubit entanglment rates by synchronizing photon interference between network nodes [2]. Hybrid quantum networking leverages trapped ions’ high fidelity operations and neutral-atoms’ single photon manipulation for increased entanglement rates over single-species quantum networks [3-8]. Here, we aim to demonstrate flying-qubit photon storage in a neutral-atom system using frequency-converted photons entangled with a trapped barium ion.The quantum information encoded in the flying qubit’s polarization states is reversibly mapped to a multiplexed dual-rail encoding scheme during storage.This work helps enable long-distance quantum networking by synthesizing hybrid components in entanglement distribution [9].
[1] Yichao Yu, Sagnik Saha, Mikhail Shalaev, George Toh, Jameson OReilly, Isabella Goetting, Ashish Kalakuntla, Christopher Monroe, arXiv:2503.19818 (2025).
[2] Chang, XY., Hou, PY., Zhang, WG. et al. Nat. Phys. (2025)
[3] K. Hammerer, A. S. Sørensen, and E. S. Polzik, Rev. Mod. Phys. 82, 1041–1093 (2010).
[4] S. Wehner D. Elkouss, R. Hanson, Science 362, eaam9288 (2018).
[5] A. R. McMillan et al., Sci Rep. 3, 2032 (2013).
[6] A. Kumar, A. Suleymanzade, M. Stone, et al., Nature 615, 614–619 (2023).
[7] J. Hannegan et al., Phys. Rev. A 103, 052433 (2021)
[8] J. Hannegan J. D. Siverns, and Q. Quraishi, Phys. Rev. A 106, 042441 (2022).
[9] J. D. Siverns et al., Sci. Adv. 5, eaav4651 (2019).
Pizza and drinks will be served after the seminar in ATL 2117.