Abstract

We present experimental results for the in-plane resistivity of the electron-doped cuprate superconductor La2-xCexCuO4 above its transition temperature T-c as a function of Ce doping x and temperature. For the doping x between 0.11 and 0.17, where T-c varies from 30 K (x = 0.11) to 5 K (x = 0.17), we find that the resistivity shows a T-2 behavior for all values of doping over the measurement range from 70 to 250 K. The coefficient of the T-2 resistivity term decreases with increasing x following the trend in We analyze our data theoretically and posit that n-type cuprates are better thought of as strange metals. Although the quadratic temperature dependence appears to be in naive agreement with the Fermi-liquid (FL) expectations, the facts that the measured resistivity is large and approximate T-2 scattering dominates the resistivity even up to 400 K argue against a standard normal-metal FL picture being applicable. We discuss possible origins of the strange-metal behavior.

Publication Details
Publication Type
Journal Article
Year of Publication
2018
Volume
98
DOI
10.1103/PhysRevB.98.224503
Journal
Physical Review B
Contributors