We propose an exactly solvable model to reveal the physics of the interplay between interaction and disorder in bosonic systems. Considering interacting bosons in a double-well potential, in which disorder is mimicked by taking the energy level mismatch between the two wells to be randomly distributed, we find a "two negatives make a positive" effect. While disorder or interaction by itself suppresses the phase coherence between the two wells, both together enhance the phase coherence. This model captures several striking features of the disordered Bose-Hubbard model found in recent numerical simulations. Results at finite temperatures may help explain why a recent experiment did not find any evidence for the enhancement of phase coherence in a disordered bosonic system.