Abstract

Following the recent success of realizing exciton-polariton condensates in cavities, we examine the hybridization of cavity photons with the closest analog of excitons within a superconductor, states called Bardasis-Schrieffer modes. Although these modes do not typically couple linearly to light, one can engineer a coupling with an externally imposed supercurrent, leading to the formation of hybridized Bardasis-Schrieffer-polariton states, which we obtain both as poles of the bosonic Green s function and through the derivation of an effective Hamiltonian picture for the model. These new excitations have nontrivial overlap with both the original photon states and d-wave superconducting fluctuations. We conjecture that a phase-coherent density of these objects could produce a finite d-wave component of the superconducting order parameter-an s +/- id superconducting state.

Publication Details
Publication Type
Journal Article
Year of Publication
2019
Volume
99
DOI
10.1103/PhysRevB.99.020504
Journal
Physical Review B
Contributors