Hero
Group Lead

A Focused Approach Can Help Untangle Messy Quantum Scrambling Problems

The world is a cluttered, noisy place, and the ability to effectively focus is a valuable skill. Researchers at JQI have identified a new way to focus their attention and obtain useful insights into the way information associated with a configuration of interacting particles gets dispersed and effectively lost over time. Their technique focuses on a single feature that describes how various amounts of energy can be held by different configurations a quantum system. The approach provides insight into how a collection of quantum particles can evolve without the researchers having to grapple with the intricacies of the interactions that make the system change over time.

Embracing Uncertainty Helps Bring Order to Quantum Chaos

In physics, chaos is something unpredictable. A butterfly flapping its wings somewhere in Guatemala might seem insignificant, but those flits and flutters might be the ultimate cause of a hurricane over the Indian Ocean. The butterfly effect captures what it means for something to behave chaotically: Two very similar starting points—a butterfly that either flaps its wings or doesn’t—could lead to two drastically different results, like a hurricane or calm winds.

But there's also a tamer, more subtle form of chaos in which similar starting points don’t cause drastically different results—at least not right away. This tamer chaos, known as ergodicity, is what allows a coffee cup to slowly cool down to room temperature or a piece of steak to heat up on a frying pan. It forms the basis of the field of statistical mechanics, which describes large collections of particles and how they exchange energy to arrive at a shared temperature. Chaos almost always grows out of ergodicity, forming its most eccentric variant.

Bilayer Graphene Inspires Two-Universe Cosmological Model

Physicists sometimes come up with crazy stories that sound like science fiction. Some turn out to be true, like how the curvature of space and time described by Einstein was eventually borne out by astronomical measurements. Others linger on as mere possibilities or mathematical curiosities. In a new paper in Physical Review Research, JQI Fellow Victor Galitski and JQI graduate student Alireza Parhizkar have explored the imaginative possibility that our reality is only one half of a pair of interacting worlds. Their mathematical model may provide a new perspective for looking at fundamental features of reality—including why our universe expands the way it does and how that relates to the most miniscule lengths allowed in quantum mechanics. These topics are crucial to understanding our universe and are part of one of the great mysteries of modern physics.