Abstract

We consider an electron gas, both in two (2D) and three (3D) dimensions, interacting with quenched impurities and phonons within leading order finite-temperature many-body perturbation theories, calculating the electron self-energies, spectral functions, and momentum distribution functions at finite temperatures. The resultant spectral function is in general highly non-Lorentzian, indicating that the system is not a Fermi liquid in the usual sense. The calculated momentum distribution function cannot be approximated by a Fermi function at any temperature, providing a rather simple example of a non-Fermi liquid with well-understood properties.

Publication Details
Publication Type
Journal Article
Year of Publication
2019
Volume
100
DOI
10.1103/PhysRevB.100.235149
Journal
Physical Review B
Contributors