Abstract

Single photons coupled to atomic systems have shown to be a promising platform for developing quantum technologies. Yet a bright on-demand, highly pure, and highly indistinguishable single-photon source compatible with atomic platforms is lacking. In this work, we demonstrate such a source based on a strongly interacting Rydberg system. The large optical nonlinearities in a blockaded Rydberg ensemble convert coherent light into a single collective excitation that can be coherently retrieved as a quantum field. We simultaneously observe a fully single-mode (spectral, temporal, spatial, and polarization) efficiency up to 0.098(2), a detector-background-subtracted g((2))+5.0(1.6) x 10(-4), and indistinguishability of 0.980(7), at an average photon production rate of 1.18(2) x 10(4) s(-1), All of these make this system promising for scalable quantum information applications. Furthermore, we investigate the effects of contaminant Rydberg excitations on the source efficiency and observed single-mode efficiencies up to 0.18(2) for lower photon rates. Finally, recognizing that many quantum information protocols require a single photon in a fully single mode, we introduce metrics that take into account all degrees of freedom to benchmark the performance of on-demand sources. (C) 2020 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

Publication Details
Publication Type
Journal Article
Year of Publication
2020
Volume
7
Number of Pages
813-819
DOI
10.1364/optica.391485
Journal
Optica
Download the Publication
Contributors