We show how the appearance of d-wave pairing in fermionic condensates manifests itself in inelastic light scattering. Specifically, we calculate the Bragg scattering intensity from the dynamic structure factor and the spin susceptibility, which can be inferred from spin-flip Raman transitions. This information provides a precise tool with which we can identify nontrivial correlations in the state of the system beyond the information contained in the density profile imaging alone. Due to the lack of Coulomb effects in neutral superfluids, this is also an opportunity to observe the Anderson-Bogoliubov collective mode.