Abstract

We present a scheme for correcting for crosstalk- and noise-induced errors in exchange-coupled singlet-triplet semiconductor double quantum dot qubits. While exchange coupling allows the coupling strength to be controlled independently of the intraqubit exchange couplings, there is also the problem of leakage, which must be addressed. We show that, if a large magnetic field difference is present between the two qubits, leakage is suppressed. We then develop pulse sequences that correct for crosstalk- and noise-induced errors and present parameters describing them for the 24 Clifford gates. We determine the infidelity for both the uncorrected and corrected gates as a function of the error-inducing terms and show that our corrected pulse sequences reduce the error by several orders of magnitude.

Publication Details
Publication Type
Journal Article
Year of Publication
2018
Volume
98
DOI
10.1103/PhysRevB.98.035406
Journal
Physical Review B
Contributors