We theoretically investigate, using nonperturbative strong correlation techniques, Mott-insulating phases and magnetic ordering of two-component fermions in a two-dimensional double-well optical lattice. At filling of two fermions per site, there are two types of Mott insulators, one of which is characterized by spin-1 antiferromagnetism below the Neel temperature. The superexchange interaction in this system is induced by the interplay between the interband interaction and the spin degree of freedom. A great advantage of the double-well optical lattice is that the magnetic quantum phase diagram and the Neel temperature can be easily controlled by tuning the orbital energy splitting of the two-level system. Particularly, the Neel temperature can be one order of magnitude larger than that in standard optical lattices, facilitating the experimental search for magnetic ordering in optical lattice systems.