Abstract

We report the theoretical discovery of a class of 2D tight-binding models containing nearly flatbands with nonzero Chern numbers. In contrast with previous studies, where nonlocal hoppings are usually required, the Hamiltonians of our models only require short-range hopping and have the potential to be realized in cold atomic gases. Because of the similarity with 2D continuum Landau levels, these topologically nontrivial nearly flatbands may lead to the realization of fractional anomalous quantum Hall states and fractional topological insulators in real materials. Among the models we discover, the most interesting and practical one is a square-lattice three-band model which has only nearest-neighbor hopping. To understand better the physics underlying the topological flatband aspects, we also present the studies of a minimal two-band model on the checkerboard lattice.

Publication Details
Publication Type
Journal Article
Year of Publication
2011
Volume
106
DOI
10.1103/PhysRevLett.106.236803
Journal
Physical Review Letters
Contributors