Abstract

We develop the plasmon-pole approximation (PPA) theory for calculating the carrier self-energy of extrinsic graphene as a function of doping density within analytical approximations to the GW random phase approximation (GW-RPA). Our calculated self-energy shows excellent quantitative agreement with the corresponding full GW-RPA calculation results in spite of the simplicity of the PPA, establishing the general validity of the plasmon-pole approximation scheme. We also provide a comparison between the PPA and the hydrodynamic approximation in graphene, and comment on the experimental implications of our findings.

Publication Details
Publication Type
Journal Article
Year of Publication
2018
Volume
98
DOI
10.1103/PhysRevB.98.195140
Journal
Physical Review B
Contributors